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ABSTRACT

The optimal linear combination of control variates is well known when

the controls are assumed to be unbiased. We derive here the optimal linear

combination of controls in the situation where bias is present. This

analysis is particularly relevant to the small-sample theory for control

variates as applied to the steady-state estimation problem. Results for

the method of multiple estimates are also given.
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1. INT"ODUCTION.

The method of control variates has been extensively studied as a tech-

nique for obtaining variance reductions for complex simulations. The

method basically requires that the practitioner be able to identify pro-

cesses for which the asymptotic mean is known; the knowledge of those

asymptotic means is then used to obtain a variance reduction.

Our goal here is to study a specific aspect of the small-sample theory

for control variates. Our particular interest focuses on the loss of effi-

ciency incurred when only the asymptotic mean is known, as opposed to the

true (small-sample) mean. The results obtained here have implications for

the application of control variates to the steady-state estimation prob-

lem. Specifically, in many steady-state simulations, only the asymptotic

means of the control variates are known; see, for example, Section 8 of

GLYNN and WHITT (1985), in which the arrival process to a queue is used as

a control.

The results obtained here complement other small-sample studies on

control variates in which the focus is on the degradation in performance

caused by estimation of the optimal control coefficients; see, for example

LAVENBERG, MOELLER, and WELCH (1982), RUBINSTEIN and MARCUS (1985), and

VENKATRAMAN and WILSON (1985).

Our methods can also be used to study small-sample properties of the

method of multiple estimates; see Section 5. Concluding remarks are stated

in Section 6.
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2. BACKGROUND ON CONTROL VARIATES.

Suppose that one wishes to estimate a parameter r from a simulation.

Assume that it is possible to generate variables (X,Y), (X,Y),...
11 212

(X R I, YiE tE d  d > 1) such that

n
(2.1) X ~--"X =~r

n n i

Yn
n n i

(-0 denotes weak convergence) as n-, where i is known. Clearly, the

estimator X is consistent for r under (2.1).

The fundamental observation underlying the method of control variates

d
is that (2.1) and (2.2) together imply that for X E IR

UnX -XYn X (Yn - r

as n-, so U (k) is also consistent for r. (We adopt here the conven-
n

tnthtaleeetof]d t
tion that all elements of R dare represented as column vectors; a

d
denotes the transpose of a E iR.) Since 4 is known, U (X) is an

n

estimator which can legitimately be constructed from the simulated data.

Furthermore, X is at our disposal, so that % may be chosen so as to

maximize the efficiency of the estimator U (k).n

To maximize the asymptotic efficiency of U (k), it is common to assumen

a strengthened form of (2.1) and (2.2)

I

(2.3) n2 (X - r, Y n - 0) " N(O,C)nn

2!

• . . - +, '.+ -_ .°l.. . -. .,- • - . . . ... -



as n-, where N(O,C) is a multivariate normal distribution with mean

vector zero and (d+l) x (d+l) covariance matrix

a2 ct

C- x xy
C C
xy yy

(c xy and c y are dxl and dxd matrices, respectively.) Given (2.3).

the continuous mappling lemma (BILLINGSLEY (1968). p. 31) shows that

(24)2- 2
(24)n (UX - r) a(X) N(Otl)

as n- , where

a 2(M a 2 - - c t+ X. t C
x xy xy yy

To optimize the asymptotic efficiency of U (%)t (2.4) suggests that
n

one should choose X so as to minimize a (X). Assuming that c is
yy

positive definite (and hence non-singular), the value X* which minimizes

2
a (X) is given by

(2.5) c yyc

K2
(see p. 31) of ANDERSON (1958); the corresponding value of a () is then

(2.6) a2 (X*) C 2 a - 1 ccv

3
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3. THE OPTIMAL SOLUTION IN THE PRESENCE OF BIAS.

The development of the formulas (2.5) and 2.6) discussed in Section 2

relied heavily on the asymptotic limit theory for the estimator U (X). A
n

somewhat different approach, which permits study of small-sample behavior,

can also be taken. As we shall see, the two viewpoints coincide, under

appropriate regularity conditions, in the limit.

A reasonable criterion for choosing the control coefficient vector X

is to choose X so that the mean squre error (MSE) of U (k) is minimized.n

For this criterion to make sense, assume that:

2 t
(3.1) E(X + YtY ) < for n > 1.

n n n

Let

b (n) = E(X - r)x n

b (n) = E(Y -
y n

S(n) = var (

c (n) = E(7¥) - E(7 )E(Y)
xy n n n n

c (n) = E(7Y )-E(Y )E(Y)
yy n nn n

and

2
MSE (X) = E(U (X) - r)

n n

4o



Then,

(3.2) MSE MX v'ar(U (k)) + (E(U()-
n n n

2 t
a = (n)-Xc (n)-c (n) X

'C 'y xy

+ (Xc )X + b (n)
xy x

t t
+ b (n)% b (n) + b (n)b (n) X

x y xC y

t t
+ X b (n)b (n) X

y y

2
This quadratic form in X has precisely the same structure as does ar MI)

so that the minimizer X* of MSE (X) is given by
n n

(3.3) X =A(n)- d(n)
n

where

A(n) - c yy(n) + b y(n)b y(n)

d(n) -c (n) + b (n)b (n).xy x y

(Of course, we again require that c Yy(n) be positive definit1e. Note that

this implies AWn Is positive definite.) The correspondi.ng minimal value

of MSE (X is then

5
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2 2

(3.4) MSE-n1X a2(n) + b 2 (n )

-d(n) tA(n)-l1d(n) ,.

W,
We summarize our discussion thus far with the following proposition.

(3.4) PROPOSITION. Assume (3.1). Then, if c (n) is positive definite,
yy

the minimizer X of MSE (X) is given by (3.3) and the minimizing value
n n

of MISE (k) is given by (3.4).n

As promised earlier, we will now show that the MSE criterion used in

this section coincides with the asymptotic efficiency criterion used in

Section 2. We will require the additional regularity condition:

(3.6) n(- - r)2 + n( ) - ) : n > I is uniformly integrable.n n n

This assumption allows us to pass expectations through the limit theorem

(2.3), thereby yielding

2

(3.7) n b x(n) - 0

x

n b (n) * 0

2 2
n a (n) -x x

n c (n) c
xy xy

n c (n) c
yy yy

as n-c. We may therefore conclude that

6.4.'
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n A(n) c , andyy

n d(n) + c
xy

So that if c is positive definite, thenyy

x = (n A(n)) (n d(n))
n

-1 *
4C C =Xyy xy

Similarly,

* 2*
n MSEnCX ) a C(X),

n n

thereby yielding the following result.

(3.8) PROPOSITION. Assume (2.3) and (3.6) ((3.6) implies (3.1)). If c
yy• * 2(

is positive definite, then X * X and n MSE (2) a(X*), as n-m .
n n n

This proposition Is a formal statement of the fact that the MSE and

asymptotic efficiency criterion coincide as n--.

4. SMALL-SAMPLE TEORY FOR STEADY-STATE CONTROL VARIATE SCHEMES

Suppose that r is a steady-state parameter of a stochastic system,

and the (X ,Y ),(X2,Y2)... represent observations gathered during the

time evolution of the system. Our primary goal here is to obtain an

asymptotic expansion for X and MSE (X).
n n n

We will need to assume that both (2.3) and (3.6) are valid for our

steady-state simulation. One condition which guarantees this is to require

7
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that {(X,Y) n > 1} be a non-delayed regenerative sequence with regen-
ns n

eration times To  0, Ti T 2 .... If one imposes the moment condition

T0 1

E + 1Y)2} <
k=0

then (2.3) and (3.6) follow (see pp. 99-104 of CHUNG (1967) for a proof in

the Markov chain setting; the general case can be argued in precisely the

same way).

We will further require that the bias terms take the form

(4.1) b (n) = n b + o (

x n xn

b (n) b + o()
y n y n

for some constants b and b , where o(d ) represents a sequence {a }x y n n

such that a /d - 0 as n-. The assumption (4.1) is satisfied in a
n n

variety of steady-state contexts.

Suppose, for example, that

(4.2) EX - r < <.
n-I

Then, if we set

b - (EX - r),
X n

n.1

it follows that

8i



n
b ( (EX r)

b E~ r) r
.!b -! [ (EX. - r)

n x n 1
i=n+ I

=-b + o
n x n

A similar analysis for b (n) shows that
y

(4.3) 1 E - (Y < .

n=1

is a sufficient condition for the second bias expansion. The absolute con-

ver- nce of the sums in (4.2) and (4.3) occurs automatically if the expec-

tations converge geometrically fast:

n
(4.4) EX n r + o(p)

n1

EY = 4 + 0(, n )
n

for some p satisfying jp1<1. The geometric convergence dictated by

(4.4) is frequently satisfied in a Markov process context, for example. In

particular, many aperiodic Markov chains satisfy (4.4); see Lemma 7.2,

p. 224, of DOOB (1953) and pp. 75-101 of KEHENY and SNELL (1960).
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-I . . - V w - rr r a _ t- - r•

Assuming now that (2.3), (3.6), and (4.1) are in force, observe that

* - 1"-'

n A(n) d(n)n "

-1
- (n A(n)) (n d(n))

From (3.7) (this is implied by (3.6)) and (4.1), it is evident that

I bt 1
SA(n) c + -b b+ or-

yy n y y "n

n d(n) c + - - b b + o'l
KY n x y n

Hence, assuming c is a positive definite,Y

(n A(n)) = (c I +- c b b ot +
yy n yy y y *n

(I +_- c-b bt + o(-Jt c
n yy y n yy

Now for n large enough, the matrix

t-

F(n) = -b b +
n yy yy n

has been spectral radius less than one, so that

(I + F(n)) = I - F(n) + F(n) - F(n) 3 +

I -1 t I
= I -- c b b+ o •n yy y y n

Consequently

1(1.

I



X (-c b b + 0~J c (c + b b +on n yy y y n y n xy -

-1 1 b- t c c
yyy Ti yy y yyy xy

+I -b bb +o()
nyy xy n

Similarly, we find that

n MSE(X )=a 2 c c -1c
ni x xYyyyxy

1b b c -1c +-Ib2
n x yyy xy n x

t c~b
n xy yy x y

I t -1 t -1+ -c c b b c c
ni xy yy y y yy xy

+ (1
n)

We therefore obtain the following result.

*(4.5) THEOREM. Assume (2.3), (3.6), and (4.1). If c yyis positive defi,-

* nite, then

X = X -c b b c' c
n n yy y yyy xy

+-c b b + 0(-
ni yy xy ni



and

* 2* 2 b t-1

n MSE (X 2 = X*) 2 b b tc_ c
n n 2 ) n x y yy xy

1 t -1 t -1
+-c tc b btc lc

n xy yy y y yy xy

+ I b 2 •()
n x n

It is of some interest to examine the degradation in MSE of the

control variate scheme when the asymptotic control vector X* is used,

rather than the small-sample optimal vector X
n

Let M () = n MSE (X). It is easily verified, from (3.2), that forn n

arbitrary X and X090

(4.6) M (X) f MnCX ) - V M (X -X )n n o n o 0

+ (X- X )t Hn_(X X )
o n o

where

V Mn (X) = 2n(cyy (n) + by (n)by (n)t) X0

-2n c (n) + 2n b (n)b (n)
xy x y

and

H n c (n) + n b (n) b (n).
n yy y y

(This is just a Taylor expansion of M nX) around X f X .) Setting X =n 0
, ,

X* and X = X, we observe that V HnCXn) = 0 so that (4.6) becomes
0 fl nfn

* * * *)t * *
(4.7) M (X) f M () + (X - X H (X - k ).

n n n n n n

12
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Letting

d -1b bt-1 -1
d c bbc c -c b b,yy y y yy xy yy xy

Theorem 4.5 shows that X X* - d/n + o(l/n), whereas (3.7) yields H -*

n n

c as n4*. It follows from (4.7) that
yy

* * 1_ t 1

MnCX ) M (Xn) +- d c d + o(-
n n n 2 y

As a consequence, we obtain the following result.

(4.8) PROPOSITION. Assume (2.3), (3.6), (4.1), and that c is positive, , , yy

-' definite. Then, the degradation in MSE MX) caused by using \* rather
n

* -3 t 3
than X is given by n d c d + o(l/n . (Since c is positive

n yy yy

definite, dtc d is always nonnegative.)YY

Thus, the degradation in MSE is of small order, since it decreases as

the reciprocal of the cube of the sample size. However, in certain small-

sample situations, the degradation could be significant. In such a situa-

tion, Theorem 4.5 provides a possible key to improving the performance of

the control scheme.

Let X = / -din. Noting that X - + o(1/n), it follows from
n n n

A * 2
(4.7) that M(X) = H (X) + o(1/n ). Thus, using X as the controlm n n n n

vector is "almost" as good as using the optimal vector X
n

Clearly, in order to obtain optimal asymptotic efficiency from the

-1
control variate scheme, X* - c c must be estimated. Ordinarily,

yy xy

this will require consistent estimation of both cyy and c xy; see IGLEHART

13
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and LEWIS (1979) for details in the regenerative case. Thus, if the simu-

lation can estimate the quantities b and b , n can be obtained andx y n

used to improve performance. Note that even if the estimators are not par-

ticularly accurate, their influence "washes out" fairly rapidly, since~n

* X* as n-*. Thus, one should never lose too much efficiency, even with

poor estimators.

5. SMALL-SAMPLE TEORY FOR STEADY-STATE MULTIPLE ESTIMATE SCHEMES

Our goal here is to establish small-sample results, analogous to those

obtained in Section 4, for the method of multiple estimates. Given a

steady-state parameter r E E, suppose that one can generate an IR -

valued sequence Z ,Z2,... such that

12 I

(5.1) n2 ( - r e) - N(O,C)

das n-0, where Z n (Z +..+Z n)/n, e c IR is a vector consisting entirely

of l's, and C is a d x d covariance matrix. The idea behind the method

t
of multiple estimates is that for any vector a such that a e 1, (5.1)

implies that

at Z n - rn

one now chooses a so as to maximize efficiency. HEIDELBERGER (1980) ex-

plored this technique in the context of Markov chains, and showed how one

can generate Z's with property (5.1).

14
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It is worth pointing out that the method of multiple estimates can be

viewed as a special case of control variates. Let

tX = e Z /d
n n

Then,

a tZ X -x Yt
n n n

t
where Y = Z and X = e/d - a. The constraint a e 1 translates into

n n
t

choosing X so that X e = 0. With the (X ,Y )'s defined in this way,
n n

we are again in the setting of Section 2 through 4. Although it would be

possible to derive all the asymptotic theory for multiple estimates by ap-

pealing to the previously developed results for control variates, it seems

easier to obtain them directly.

Note that the continuous mapping lemma, as applied to (5.1), yields

1I

2t 2
n (a Z - r) =+ a (a) N(O, )

n

where c2(a) a tCa. The minimizer of a2(a) subject to aetwhr a ()e = 1 is given

by

to-1
a C-e eC e

provided that C is positive definite (see p. 60 of RAO (1973)). The min'-

2 2 t-1 -1
mal value of a (a) is then given by a (a*) (e C e) -

. The following

theorem summarizes the situation.

15

' ' .'--€, -, t-:- " "" '"" "" "."•, ,,. ," ," 
' ' '

"" L, .. ,.,' " " " ,." -""" " .*""."*""*." .'' *-*-.*-.*. -"-''" . --. ""-*-""-*.'.-



*(5.2) THEOREM. Assume that (5.1) holds with C positive definite. Then:

2 t - I-
Mi a Ca) has minimal value Ce C e) ,and is minimized at a*

-1 t-
C e/Ce C e).

t-
If, in addition, {nCZ - re) CZ - re) :n > 1} is uniformly integrable

n n
dand if EZ = re + b/n + o~l/n) for some b EF- , then:

n

ii) MSE (a) E Ea' Zn r has minimal value

t nnt -I -1I
Ce (C~n) + b~n)b~n) ) e) and is minimized at

t-
= eCCn) +b (n)bn) )e

n et(C~n) + b (n)b(n) ) e

t t
where C~n) =E(Z Z )-(EZ )(EZ ) and b~n) =EZ -re,

n n n n n

-1 e I + -1 b bt C- 1 e
n - -1 n

(e C e) Ce C e)

1ic bb C e + o(lK) and

n etc ~ 1e) n

*1 ecbb C e) 01)MSE~a) -1 ( eC - +
etCle n eC e

* -3 t -3
Civ) MSE(a*) =MSE~cz n + n d Cd + o~n ), where

t -1 t- -1 t -1
d (e C bb Ce C-1 e C bb C e

Ce C e) etCl e

16
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Thus, the results obtained for the method of multiple estimates are

qualitatively similar to those obtained for control variates.

6. CDNCLUSIONS.

Using the MSE criterion, we have shown that under rather general
*

conditions, the small-sample optimal control coefficients Xn, for steady-

state simulations, differ from the asymptotically optimal control coeffi-

cients X* by a factor of order n * The first-order error term involves

only the asymptotic covariance structure, and the first-order bias terms;

the (exact) small-sample covariance structure plays no role, even in the

case of a non-stationary steady-state simulation. The loss, in MSE effi-

ciency, created by using the asymptotically optimal X*, rather than the

• -3
small-sample optimal Xn, is of order n . Thus, the loss in efficiency

is of small order.

Similar results hold for the method of multiple estimates.

17
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